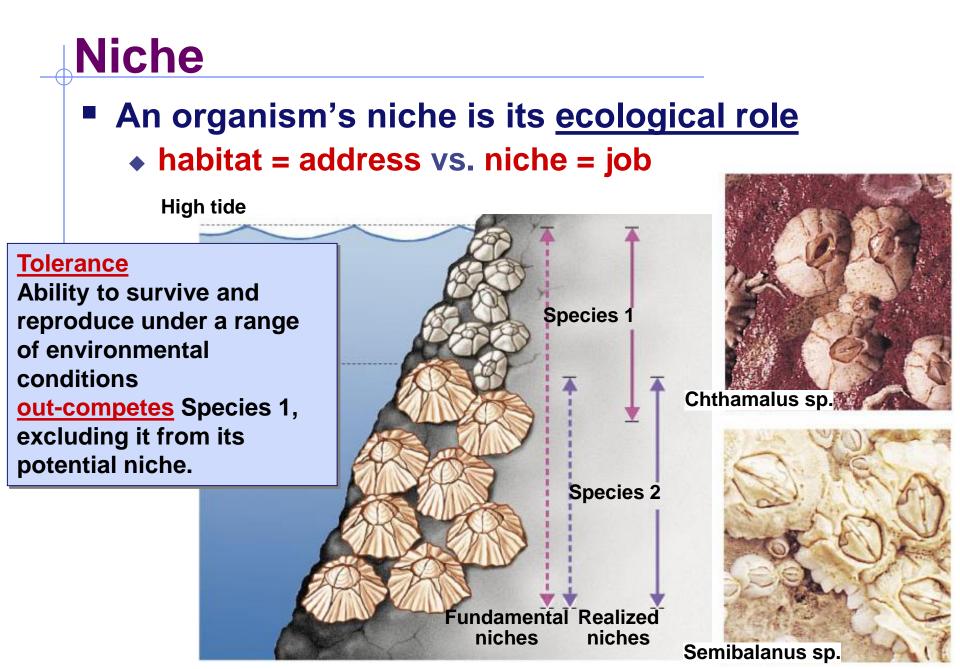


Community Ecology

Community


- all the organisms that live together in a place
 - interactions

Community Ecology

To answer: In what way do the populations interact?

 study of interactions among all populations in a common environment

Niche & competition

Competitive Exclusion

 No two similar species can occupy the same niche at the same time


Resource Partitioning

Divide up the resources so that each species uses similar but yet different

Interspecific interactions

- Symbiotic interactions
 - <u>competition</u> (-/-)
 - compete for limited resource
 - competitive exclusion!
 - predation / parasitism (-/+)
 - mutualism (+/+)
 - lichens (algae & fungus)
 - <u>commensalism</u> (+/0)
 - barnacles attached to whale

<u>Symbiosis</u>

predation

commensalism +/0

+/- con

mutualism

+/+

...not very funny

for a clown fish

What relationship is this?

Predation drives evolution

- Predators adaptations

 locate & subdue prey

 Prey adaptations
 - elude & defend

horns, speed, coloration

Predation provides a strong selection pressure on both prey & predator

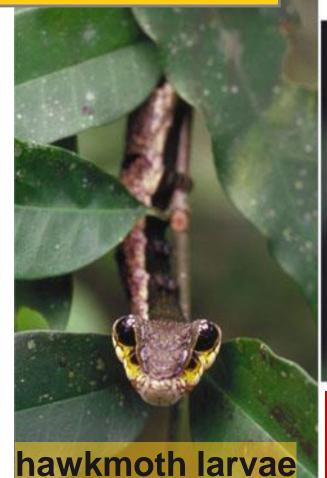
spines, thorns, toxins

Snake and newt video

Anti-predator adaptations

- Hide from predators
 - avoid detection
 - camouflage
- Warn predators
 - advertise how undesirable you are as prey

- aposematic coloration
 - apo = away & sematic = sign/meaning
 - Batesian mimicry
 - Mullerian mimicry

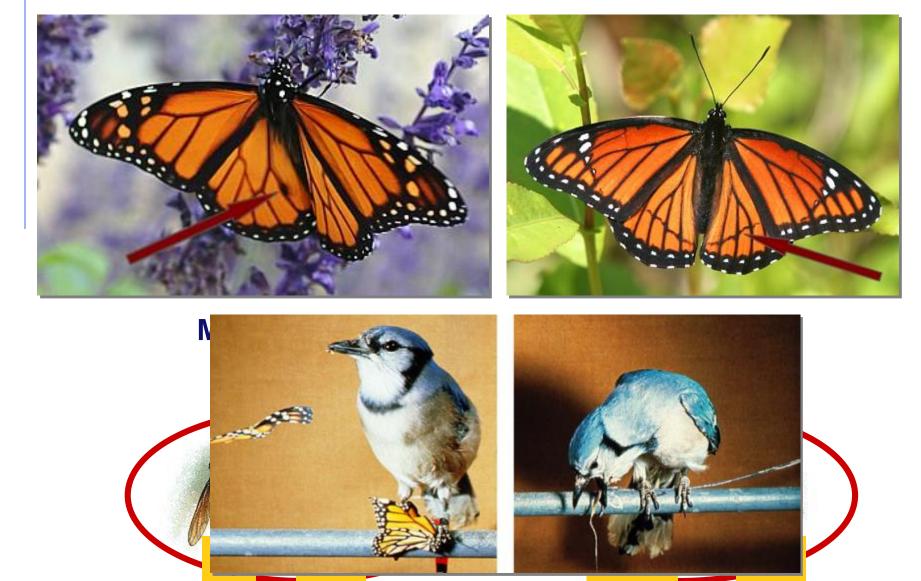

Defense mechanisms Camouflage ◆ cryptic coloration whipporwill frog izarc toad

izaro

Convergent evolution

Batesian mimicry

palatable or harmless species mimics a harmful model



green parrot snake

Hawkmoth larva puffs up to look like poisonous snake

Convergent evolution

Batesian mimicry

Mullerian mimicry

two or more protected species look like each other

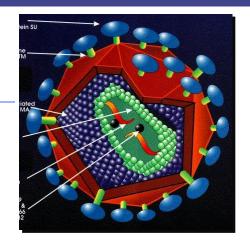
cuckoo bee

yellow jacket

Common warning coloration

Aposematic species come to resemble each other

What kind of mimicry?

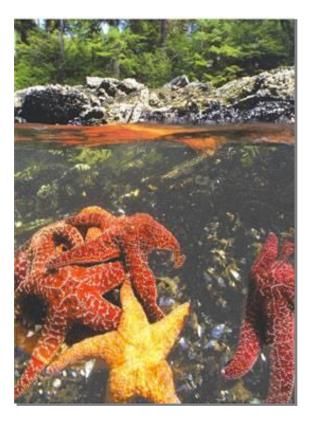

Coral snake is poisonous

King snake is not

Red on yellow, poison fellow; red on black, safe from attack

Coevolution in Community

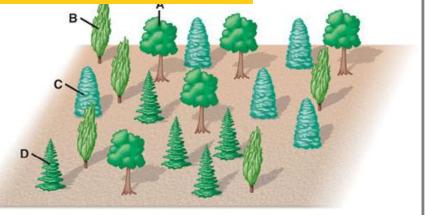
- Predator-prey relationships
- Parasite-host relationships
- Flowers & pollinators

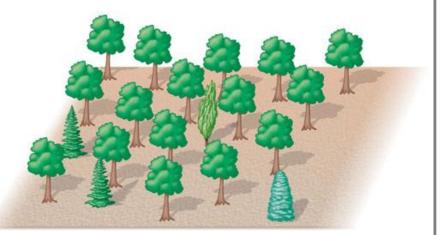

Long term evolutionary adjustments between species

Properties of a Community

Species Diversity

Characterizing a community


- Community structure
 - species diversity
 - how many different species
 - <u>composition</u>
 - dominant species
 - most abundant species or highest <u>biomass</u> (total weight)
 - keystone species
 - changes over time
 - succession


Species diversity

greater diversity = greater stability

- Greater biodiversity offers:
 - more food resources
 - more habitats
 - more resilience in face of environmental change

Community 1 A: 25% B: 25% C: 25% D: 25%

Community 2 A: 80% B: 5% C: 5% D: 10%

The impact of reduced biodiversity

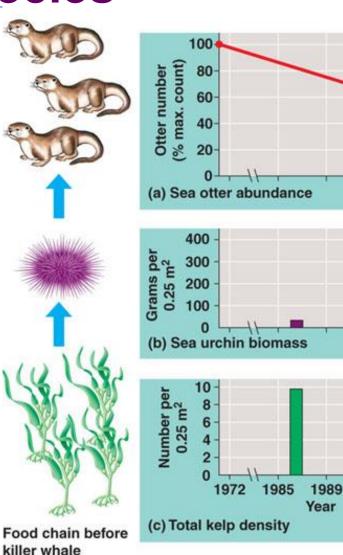
compare these communities

agricultural "monoculture"

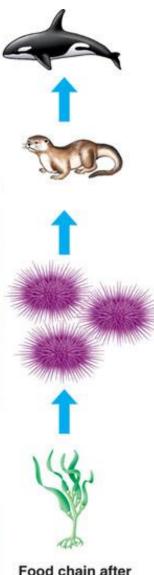
"old field"
Irish potato famine
1970 US corn crop failure

Keystone species

Influential ecological role


- exert important regulating effect on other species in community
- keystone
 species
 increases
 diversity
 in habitat

Keystone species


Sea otter is a keystone predator in North Pacific

What is the impact of the Orca whale?

involvement in

chain

Food chain after killer whales started preying on otters

1993 1997

Succession

Æ

Ecological succession

- Sequence of community changes
 - transition in species composition over time
 - years or decades
 - usually after a disturbance

Primary succession

- Begins with virtually lifeless area without soil, then...
- make **bacteria** soil **bacteria**
 - mosses
 - grassesshrubs
 - trees

Ca Grand Pacific GI. Al 1940 1912 1899 1907 0 1900 1879 1892 1879 1913 1949 1935 1860 Reid GI. **Johns Hopkins** GI. Glacier Bay 1830 1780 1760 Pleasant Is.

McBride glacier retreating

Secondary succession

Existing community cleared, but base soil is still intact

burning releases nutrients formerly locked up in the tissues of tree

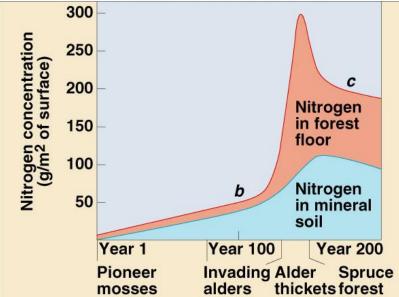
the disturbance starts the process of succession over again

Succession of species

more shade tolerant species

shade tolerant species stable community

climax forest


rees

What causes succession?

Tolerance

- early species are weedy r-selected
- tolerant of harsh conditions
- Facilitation & Inhibition
 - early species facilitate habitat changes
 - change soil pH
 - change soil fertility
 - change light levels
 - allows other species to out-compete

Climax Community

Final stage of natural succession for specific location

- stable plant community
- remains essentially unchanged in species composition as long as site remains undisturbed
 - birch, beech, maple, hemlock
 - oak, hickory, pine

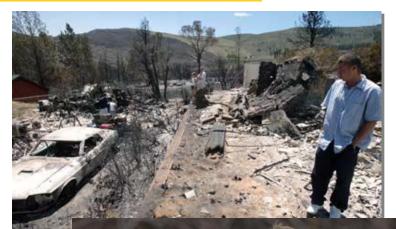
Disturbances as natural cycle

- Disturbances are often necessary for community development & survival
- release nutrients
- increases biodiversity

fire climax forests

Jack Pine

Fire climax species



adaptations to survive and reproduce in areas than experience frequent fires

When people don't learn ecology!

Building homes in fire climax zones

preventing fires makes next year's fire much worse!

C Robert Wir

Don't blow your top! Ask Questions!

2007-2008